skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niteesh Bharadwaj Vangipurapu, Haifeng Lyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a new way of designing multi-mode switchable power amplifier without relying on any extra tuning elements. By operating the RF GaN transistor as a switch (digital) or amplifier (analog), it enables three different modes within a quadrature-balanced load-modulation architecture, including series/parallel Doherty and hybrid load modulated balanced amplifier (H-LMBA), which can be optimally configured according to different load conditions. Based on this new method, an intrinsically mode-switchable load-modulation PA is designed with GaN transistors and branch-line quadrature coupler at 1.7 GHz. Together with the unique harmonic-tuned method, the nominal mode of H-LMBA (for matched condition) achieves a high-order load modulation with > 62% measured efficiency across a 10-dB output back-off (OBO) range. Efficient performance is also demonstrated at series/parallel Doherty modes, which are configured with exchangeable main/auxiliary roles and dedicated switch settings offering mismatch resilience. 
    more » « less